

Liberté Égalité Fraternité

INSTINCT – <u>In situ micromechanical</u> <u>investigation of solids under extreme conditions</u>

Réunion de lancement ANR 2022

Szilvia Kalacska, CR CNRS 08 Dec. 2022

Project identity sheet

- Acronym: **INSTINCT**
- Title: <u>In situ micromechanical investigation of solids under extreme</u> <u>conditions</u>
- Partners:
 - 1/ Laboratoire Georges Friedel (LGF): S. Kalacska, G. Kermouche, F. Christien
 - 2/ Laboratoire des Sciences des Procédés et des Matériaux (LSPM): Yann Charles

CNIS

- 3/ Science et Ingénierie des Matériaux et Procédés (SIMAP): Marc Fivel
- 4/ Eötvös Loránd University (ELTE, Hungary): P.D. Ispánovity
- Project start date: 02 January 2023.

ANR-22-CE08-0012-01

- Duration : 42 moths
- ANR help: **271 k€**
- Full cost: **585 k€**
- Instrument specificity: JCJC Jeunes chercheurs jeunes chercheuses

Une école de l'IMT

LGF)

Réunion de lancement - édition 2021

Context

anr[°] INSTIN

•MICROMECHANICS: Materials' response to external deformation fundamentally differs from bulk as the sample size is reduced

Understanding mechanisms of deformation at the sub-micron scale is the key for designing new materials and alloys for industrial applications
EXTREME CONDITIONS: hydrogen causes degradation of mechanical performance in metals, the microscale mechanisms remain a subject of debate

•IN SITU: direct H-detection within the lattice is an **extremely challenging** task, while one has to deal with **continuous diffusion and outgassing issues** from small samples

Zero-emission commercial / scientific aircraft Extreme conditions (vibrations, shock, refueling) The method will be applicable for the industrial development

B.3: Metallic and inorganic materials

understanding the (mechanical) properties of materials (functional properties, metallurgical thermodynamics, microstructures, damage, fatigue, corrosion)

Scientific and technical objectives

Paving the way towards mechanical characterization of materials subjected to extreme environmental conditions at small scales.

These extremities include **high strain rates** (10^3 s^{-1}) and **temperatures** varying between **cryogenic** (down to -150° C) up to **medium ranges** (room temperature to $\sim 400^{\circ}$ C).

In particular, project INSTINCT aims to study materials' characteristics in the **hydrogen context**.

Scientific and technical objectives

Expected benefits

Scientific impact:

- \checkmark strengthen collaborations
- ✓ develop and apply *in situ* experimental techniques
- ✓ perform cutting-edge measurements

Economic and social impact:

- ✓ The global economy is in desperate need of safe infrastructure and transport solutions of sustainably energy
- ✓ Carrying out tests by measuring mechanical properties at the right scale in the right circumstances
- \checkmark Contribute to the European and French target to become carbon neutral by 2050

Expected contribution to the **design of new functional and structural materials** and better understanding of hydrogen embrittlement processes.

https://www.micromechanics.fr/

